
1

TR-07601-14

TAOS ENVIRONMENTAL SIMULATION SERVICES
Version 1.0

Developer’s Guide
30 January 1998

Prepared Under:

Contract No. DACA76-94-C-0021

for

U.S. Army Topographic Engineering Center

Attn: CETEC-TD-SM

7701 Telegraph Road

Alexandria, VA 22315-386

Technical POC:

Robert A. Reynolds

rareynolds@tasc.com

(781) 942-2000 x3117

Adminstrative POC:

Ronald M. Ponikvar

rmponikvar@tasc.com

(781) 942-2000 x2986

2

TABLE OF CONTENTS

1. OVERVIEW..5

2. COMPILE-TIME REQUIREMENTS...5

3. PROCESS ARCHITECTURE AND MESSAGING SYSTEM..6

4. SOURCE TREE OVERVIEW AND BUILD INFRASTRUCTURE11

5. SERVER...14

5.1 Integrator Class Libraries and Programs..14

5.1.1 libIntegrator (at: src/Integrator/Integrator)...14

5.1.2 libFTPReceiver (at: src/Integrator/receivers/FTP) ..16

5.1.3 libDecoder (at: src/Integrator/decoders/TAOS)..17

5.1.4 FTP Receiver (at: src/Integrator/receivers/FTP/bin/IRIX5) ..18

5.1.5 TAOS Client Receiver (at: src/Integrator/receivers/DISHLA) ...18

5.2 Distributor Class Library (at: src/Distributor)..20

5.3 Shared Class Libraries (at: src/shared) ..21

5.3.1 libFoundation (at: src/shared/foundation) ..21

5.3.2 libSystem (at: src/shared/system) ...22

5.3.3 libPersistence (at: src/shared/persistence) ...22

5.3.4 libDatabase (at: src/shared/database) ..24

5.3.5 libMessaging (at: src/shared/messaging) ...26

5.3.6 libTransforms (at: src/shared/transforms) ...27

5.3.7 libNetwork (at: src/shared/network)..28

5.3.8 libScheduler (at: src/shared/scheduling) ..28

5.3.9 libProjections (at: src/shared/projections) ...29

6. OPERATIONS GUI..29

6.1 X/Motif GUI Components ..29

6.1.1 Operations GUI (at: src/OperationsGUI/XMotif/UI) ..30

6.1.2 Database Browser (at: src/OperationsGUI/XMotif/DBBrowser)30

6.1.3 Distributor Monitor (at: src/OperationsGUI/XMotif/Monitor)...31

6.1.4 GriddedWx Editor (at: src/OperationsGUI/XMotif/GriddedWxEditor)32

3

6.1.5 Shared Libraries..32

6.2 Tcl/Tk Components (at: src/OperationsGUI/TclTk)...36

6.2.1 Chart Assistant (at: src/OperationsGUI/TclTk/ChartAssistant)...36

6.2.2 Master State Variable Table Editor (src/OperationsGUI/TclTk/MSVTEditor)36

6.2.3 Integrator Configuration Interface (at: src/OperationsGUI/TclTk/IntegConfig)37

6.2.4 Receiver Configuration Interface (at: src/OperationsGUI/TclTk/RcvrConfig).................37

List Of Figures

Figure 3-1 TAOS Processes and Data Flows ..6

Figure 3-2 Pre-Exercise TAOS Data Flow ...8

Figure 3-3 TAOS Process Group ...11

Figure 4-1 TAOS Source Tree ...12

Figure 5-1 TAOS Object Model: libIntegrator..14

Figure 5-2 TAOS Object Model: libFTPReceiver ...17

Figure 5-3 TAOS Object Model: libDecoder ..18

Figure 5-4 TAOS Object Model: libDISHLAReceiver..19

Figure 5-5 TAOS Object Model: libDistributor ..20

Figure 5-6 TAOS Object Model: libFoundation..21

Figure 5-7 TAOS Object Model: libSystem ..22

Figure 5-8 TAOS Object Model: libPersistence ..23

Figure 5-9 TAOS Object Model: libDatabase ..25

Figure 5-10 TAOS Object Model: libMessaging ..26

Figure 5-11 TAOS Object Model: libTransforms...27

Figure 5-12 TAOS Object Model: libNetwork..28

Figure 5-13 TAOS Object Model: libScheduler ...29

Figure 6-1 libV5DView Context and APIs ...34

Figure 6-2 TAOS Object Model: libV5DView..35

4

List Of Tables

Table 3-1 TAOS Subsystems, Processes and Programs ...7

Table 3-2 TAOS Messaging ...9

Table 6-1 Operations GUI Object Structure ...31

Table 6-2 Database Browser Object Structure..31

Table 6-3 Distributor Monitor Object Structure..31

Table 6-4 GriddedWx Editor Object Structure ...32

Table 6-5 libUIshared Modules by Service Category ...33

5

1. OVERVIEW

The material in this Developer’s Guide is intended to provide a software engineer with an
overview of the TAOS source code. The TAOS software design is described first at the class library
level and then at the class level; for documentation at the method/function level the header files and
source code comments are the best resources. This guide is organized as follows. Section 2 describes
the compile-time requirements for the system. Section 3 describes TAOS at the process level and
includes an overview of the TAOS messaging system. The messaging system provides an interprocess
communication (IPC) infrastructure for the system. Section 4 provides an overview of the TAOS source
tree and its build infrastructure (i.e., make files). The TAOS server is designed to run with or without a
GUI and as a result the system divides naturally into a server subsystem and a user interface subsystem.
Section 5 documents the libraries and programs that comprise the server, while Section 6 similarly
documents the user interface.

In this document the names of directories, files, libraries and programs are indicated in bold type.
Class libraries in particular are referred to via the name of the library with a lib prefix and the .a suffix
omitted; for example libFoundation is used to refer to the Foundation class library that exists in binary
form in file libFoundation.a at directory TAOS_HOME/src/shared/foundation/lib/IRIX5. Note that
for convenience the path to the TAOS root directory is denoted as a bolded TAOS_HOME. Note also
that in this document any directory paths which are indicated as relative paths are relative to
TAOS_HOME -- the directory where TAOS was installed. For example, src/shared/Network/src
refers to directory TAOS_HOME/src/shared/Network/src.

2. COMPILE-TIME REQUIREMENTS

TAOS Version 1.0 was developed on an SGI platform (Indigo 2 class) running IRIX5.3. This
document assumes that the execution environment for TAOS will be IRIX5.3. Note also that the
execution environment must include patches to support C++ exception handling (required by the STOW
RTI). The quickest way to detect if this support is present is to look for a file /usr/lib/libCsup.so.

Information on the required hardware environment is located in the User Guide, Section 2:
“Installation and Run-time Preparation”.

The TAOS system is written in a combination of C++, C, Tk/Tcl and Perl. The majority of the
system is in C++ and compiles with the SGI CC compiler, Version 4.0 with exception handling patches
1260, 1599, 1600, and 1628, using the make infrastructure included in the distribution. See Section 3 for
details of the make infrastructure.

The majority of the user interface is X/Motif-based and is written in C; these components compile
under the SGI cc (V4.0) compiler using the included make infrastructure. Selected graphical interfaces
and the Chart Utility are written in Tcl/Tk, Version 8.0 -- the required version of the Tcl interpreter and

6

support libraries are included in the TAOS distribution and will not conflict with any Tk/Tcl installation
already on the host machine.

The FTP Receiver processes are written in Perl and here too the required version of the Perl
interpreter and support libraries are included in the TAOS distribution and will not conflict with any Perl
already installed on the host system.

3. PROCESS ARCHITECTURE AND MESSAGING SYSTEM

As described in the User’s Guide, TAOS runs in three primary modes and most subsystems
support secondary modes as well, with the result that rarely are all system processes active within the
same exercise or at any given time within an exercise. Figure 3-1 is a data flow diagram of TAOS for an
unlikely (but possible) scenario where the server is running in Live Mode (both Integrator and Distributor
active) with all Receivers enabled and configured to run in Remote Mode, with the Distributor’s Monitor
and the GriddedWx Editor active, and with the Database Browser and the Chart Assistant utility running.

Figure 3-1 TAOS Processes and Data Flows

The ellipses in Figure 3-1 indicate TAOS processes, while the arrows indicate data flows between
processes. Note that while the term Operations GUI is meant to refer to all graphical interfaces in the
system from the end users’ point of view, at the process level and from a developer’s point of view the
TAOS GUI is actually seven processes, with the “master” process given the name OperationsGUI.

Active
 Scenario

FTP
Receiver

FTP
Receiver

Integrator

TAOS
Client

Receiver

Distributor

Monitor

GriddedWx
Editor

Chart
Assistant

Simulation Network

State Variable
Table Editor

Integrator
Configuration

Interface

Operations
GUI

Database
Browser

As-Published
Scenario

I
n
t
e
r
n
e
t

ED

ED ED

F

C

F

F

GPDU EPDU

SR

F

F

F

SR C

 C UE

F

SR

GE

GE: Gridded Edit

ED: Encoded Delivery
C: Command

SR: Status Report

UE: Uniform Edit

 F: Field

7

These seven processes are identified in Table 3.1, which provides details of the full process architecture
of TAOS.

Figure 3-1 describes system data flows for a fully initialized system running in “steady state”. In
this state all data exchanged between processes is either 1) message objects sent/received via the TAOS
messaging system or 2) Field objects saved into or retrieved from the active and/or as-published
scenarios. In Figure 3-1, each arrow head is annotated with a code that corresponds to the type of object
sent over that link in the direction indicated by the arrowhead. Data flows consisting of Field objects are
indicated with the code “F”. All other codes denote objects of classes derived from Message which are
sent and received using TAOS messaging system services (see libMessaging in Section 6.3). Table 3-2
defines the codes used in Figure 3-1 for these Message objects, the senders and receivers of these
messages, and a brief description of their content.

Subsystem Process Program Language
Location in Source Tree
 (from TAOS_HOME)

Integrator EnvIntegrator C++ src/Integrator/Integrator
TAOS Client Receiver TAOSClient C++ src/Integrator/receivers/DIS

Integrator

AWN Receiver
COAMPS Receiver
NOGAPS Receiver
NORAPS Receiver

NSSM Receiver
OTIS Receiver

WxRadar Receiver
STWAVE Receiver
SWAFS Receiver
SWAPS Receiver

Tide Receiver
TOPS Receiver

UKMeso Receiver
WAM Receiver

pollftp.prl Perl src/Integrator/receivers/FTP

Distributor Distributor EnvDistributor C++ src/Distributor
Operations GUI UI C src/OperationsGUI/XMotif/UI

Database Browser DBBrowser C/C++ src/OperationsGUI/XMotif/DBBrowser
GriddedWx Editor GriddedWxEditor C/C++ src/OperationsGUI/XMotif/GriddedWxEditor

Monitor Monitor C/C++ src/OperationsGUI/XMotif/Monitor
Operations

GUI
Chart Assistant taos_vis5dsh:

ChartAssistant.tcl
Tcl/Tk src/OperationsGUI/TclTk/ChartAssistant

Master State Variable
Table Editor

taos_vis5dsh :
MSVTEditor.tcl

Tcl/Tk src/OperationsGUI/TclTk/MSVTEditor

Integrator
Configuration Interface

taos_vis5dsh :
IntegConfig.tcl

Tcl/Tk src/OperationsGUI/TclTk/IntegConfig

Receiver Configuration
Interface

taos_vis5dsh :
RcvrConfig.tcl

Tcl/Tk src/OperationsGUI/TclTk/RcvrConfig

Table 3-1 TAOS Subsystems, Processes and Programs

The TAOS messaging system models a message sender or recipient as an object of class
MessageBased. Each MessageBased object has a unique address determined by the 1) TAOS process it

8

is instantiated in, 2) the host that this process is running on, and 3) an identifier for the object itself. To
date all TAOS processes have always run on the same host; this level of addressing is for future use to
facilitate scaleability of the server. The messaging system process and object identifiers are included in
Table 2 for message senders and recipients. Object identifiers indicated in parentheses denote a message
sender or recipient that is not implemented in C++ and is therefore not an actual MessageBased object.
In particular, the FTP Receiver process (pollftp.prl) is implemented in Perl and sends messages using a
direct Perl implementation of the UDP-based IPC used by libMessaging, and the Operations GUI
accesses the services of libMessaging through a C API defined for the PostOffice class. In both of these
cases, the sending/receiving entity uses an object identifier defined by the messaging system (see class
AddressBook) but is not itself an object of (or derived from) class MessageBased.

As mentioned, Figure 3-1 illustrates data flows for steady-state server operation. During server
configuration and initialization, the data flow is that which is illustrated in Figure 3-2. As suggested by
Figure 3-2, a major function of the Operations GUI is to establish the configuration parameters for a
server run that are read during initialization by the Integrator, Distributor, Receivers and Chart Assistant.

State Variable
Table Editor

Integrator
Configuration

Interface

FTP
Receiver

FTP
Receiver

Integrator

TAOS
Client

Receiver

Distributor

Monitor

GriddedWx
Editor

Database
Browser

Chart
Assistant

Operations
GUI

Configuration

Figure 3-2 Pre-Exercise TAOS Data Flow

Another process-level view of TAOS is provided in Figure 3-3. In Figure 3-3 parent-child
relationships between TAOS processes are indicated by arrows that are directed from parent to child.
The root process is the OperationsGUI which the end user knows as TAOS, however it is possible to run
the Integrator, Distributor and Database Browser in stand-alone mode by directly invoking their
executables. In stand-alone mode, the Integrator, Distributor and Database Browser are driven by the
TAOS configuration (directory) pointed at by environment variable TAOS_CONFIG.

9

Sent By Received By
Code Message Class Process Object Process Object Message Content
ED EncodedDelivery FTP

Receiver
(FTP Receiver) Integrator FTP

Receiver
Pathnames to received files containing encoded environmental data.

TAOS Client
Receiver

TAOS Client
 Receiver

Integrator TAOS Client
Receiver

Pathnames of files containing Gridded Data PDU object images

C Command Integrator Assimilation Distributor Publishing EXECUTE subcommand to start publishing
(Live Mode)

Integrator Assimilation Distributor Publishing HOLD subcommand to suspend publishing during integration of new forecast
data

Operations
GUI

(Playback
Control)

Distributor Publishing CHECK_IN subcommand to request current playback-control-related status

Operations
GUI

(Playback
Control)

Distributor Publishing PAUSE, STEP and PLAY subcommands and associated arguments

Operations
GUI

(UniformWx
Editor)

Distributor Publishing CHECK_IN subcommand to request current edit-state of UniformWx
Publication

GriddedWx
Editor

(GriddedWx
Editor)

Distributor Publishing CHECK_IN subcommand to request current edit-state of GriddedWx
Publication

Monitor (Monitor) Distributor Publishing CHECK_IN subcommand to request current server status
Distributor Publishing Operations

GUI
(UI Master) ENABLE_MONITOR subcommand, issued once virtual environment is

initialized
Distributor Publishing Operations

GUI
(UI Master) ENABLE_EDITORS subcommand, issued once virtual environment is

initialized
GriddedWx

Editor
(GriddedWx

Editor)
Distributor GriddedWx

Publication
CLEAR_EDB subcommand to clear all JointSAF/ModStealth GriddedWx
Environmental DBs to allow reversion to UniformWx

SR StatusReport Distributor Publishing Operations
GUI

(Playback
Control)

Current server status including current Playback Control state

Distributor Publishing Operations
GUI

(UniformWx
Editor)

Current server status including current Uniform Edit state

Distributor Publishing Operations
GUI

(NetSea
Editor)

Current server status including current NetSea Edit state

Distributor Publishing Monitor (Monitor) Current server status including network traffic statistics
Distributor Publishing GriddedWx

Editor
(GriddedWx

Editor)
Current server status including current Gridded Edit state

UE UniformEdit Operations
GUI

(UniformWx
Editor)

Distributor UniformWx
Publication

Update to Uniform Edit specification

GE GriddedEdit GriddedWx
Editor

(GriddedWx
Editor)

Distributor GriddedWx
Publication

Update to Gridded Edit specification

Table 3-2 TAOS Messaging

11

F T P
R e c e i v e r

F T P
R e c e i v e r

I n t e g r a t o r

T A O S
C l i e n t

R e c e i v e r

D i s t r i b u t o r

M o n i t o r

G r i d d e d W x
E d i t o r

C h a r t
A s s i s t a n t

O p e r a t i o n s
G U I

D a t a b a s e
B r o w s e r

L i v e M o d e

R e p l a y M o d e

S t a t e V a r i a b l e
T a b l e E d i t o r

I n t e g r a t o r
C o n f i g u r a t i o n

I n t e r f a c e

Figure 3-3 TAOS Process Group

4. SOURCE TREE OVERVIEW AND BUILD INFRASTRUCTURE

The TAOS source tree, rooted at TAOS_HOME/src, is shown in Figure 4-1. The leaf
nodes of the tree shown in the figure correspond to buildable TAOS objects, either libraries (lib
prefix) or programs (name in bold). Each node in the tree shown actually consists of a small tree
structured as:

lib

bin

src

IRIX5

IRIX5

The make infrastructure is designed to detect the architecture of the machine on which the system
is being compiled and to populate platform-specific directories with libraries and executables. To
date only the IRIX5 platform has been supported. In any case the developer must create
additional nodes under the lib and bin directories to support the platform-sensitive make
procedures.

The TAOS make infrastructure is based on two master makefiles -- project.mk and
hierarchical.mk -- located in directory make. Makefile are defined at various nodes
(directories) of the source tree subject to the following simple rules:

1. If a node is not associated with a buildable library or program, then it is considered to
be a parent node of a related group of libraries or programs, and must include a file
named Makefile that defines the macro SRC_DIRS and includes hierarchical.mk, as
in this example taken from TAOS_HOME/src/shared:

12

Integrator

Distributor: EnvDistributor

receivers

decoders

Integrator : EnvIntegrator

DIS: TAOSClient
FTP: libReceivers, pollftp.prl

MEL
GRIB: libGRIB
BUFR: libBUFR

TAOS: libDecoders

OperationsGUI

DBBrowser : DBBrowser
GriddedWxEditor : GriddedWxEditor
Monitor : Monitor
UI : UI (aka TAOS, OperationsGUI)
UISupport : libUISupport
V5DView : libV5DView
shared : libUIshared

shared
database : libDatabase
foundation : libFoundation
messaging : libMessaging
network : libNetwork
persistence : libPersistence
projections : libProjections
scheduling : libScheduling
system : libSystem
transforms : libTransforms

tcl

vis5dsh : taos_tclsh
tclsh : taos_vis5dsh

ChartAssistant : ChartAssistant.tcl

MSVTEditor : MSVTEditor.tcl
IntegratorConfig : IntegConfig.tcl

RcvrConfig : RcvrConfig.tcl

XMotif

TclTk

Figure 4-1 TAOS Source Tree

 SRC_DIRS = foundation/src \
 system/src \
 database/src \
 messaging/src \
 persistence/src \
 transforms/src \
 scheduling/src \
 network/src \
 projections/src

 include hierarchical.mk

 The directories included in the SRC_DIRS definition must either be buildable nodes or
themselves be parent nodes.

2. If a node is associated with a buildable library or program, then it must include a

Makefile that defines the macros found in TAOS_HOME/make/Makefile.template

13

and which includes project.mk in the last line of the file. For example, the Makefile
for the foundation library is:

LIB_NAME = libFoundation.a
LIB_LOCATION = ../lib
LIB_SOURCE = Boolean.cc \
 Error.cc \
 String.cc \
 ConfigFile.cc \
 Vector3D.cc \
 Table.cc \
 RunTimeEnv.cc \
 Time.cc

EXE_NAME =
EXE_LOCATION = ../bin
EXE_SOURCE =
EXE_LIBS =
INSTALL_LIBS = ${LIB_NAME}
INSTALL_FILES = *.hh

USER_CCFLAGS =
USER_LDFLAGS =
include project.mk

Only the macros relevant to building a given node need be given values; in the example
there is no EXE_NAME, EXE_SOURCE or EXE_LIBS assigned because the node
builds only a shared library, libFoundation.a.

The TAOS make infrastructure is known to work correctly with the ClearCase version of
make, clearmake, which provides header file dependency checking, and with the GNU make
(Version 3.74), gmake. However, the header file dependencies are not detected when using
gmake. It is known that the system will not build using the SGI version of make, which is
relatively primitive.

Due to the hierarchical design of the make infrastructure, the system can be fully built by
issuing command make from the TAOS home directory. All libraries and executables will be built
as make descends the source tree. Specific make targets are also supported:

• make lib -- build only libraries
• make exe -- build libraries and executables. Equivalent to make with no

targets.
• make clean -- remove all .o, .a, executables, and emacs backup files.

In all cases, issuing a make command from a given directory results in a recursive descent of the
source tree from that directory, affecting all nodes encountered in this descent.

5. SERVER

The TAOS system is organized as two subsystems: the server and the Operations
GUI. The server subsystem comprises the Integrator, the Distributor and the Database and

14

implements the primary functions of the system: environmental data collection, transformation and
integration, environmental data customization, distribution and related services, and
environmental data persistence. The server is implemented largely in C++ and is documented in
this section; Section 6 documents the Operations GUI, which implements all user-in-the-loop
configuration, monitoring and control functions, including the environmental data visualization
system.

5.1 Integrator Class Libraries and Programs

The Integrator program consists of a main function and the classes included in libraries
libIntegrator, libReceiver, and libDecoder. The Integrator subsystem includes the Integrator
program and the programs known as the FTP Receiver and the TAOS Client Receiver. These
programs and libraries are documented in the subsections below.

5.1.1 libIntegrator (at: src/Integrator/Integrator)

libIntegrator includes classes Assimilation, Receiving and Receiver. The object model
for these classes is represented in OMT notation1 in Figure 5-1. Note that that we don’t attempt
to indicate individual class methods and data via the diagram; if the body of a class symbol in the
figure is annotated with anything, it is the name of the library that includes that class.

MessageBased

 Assimilation Receiving Receiver

 FTPReceiver DISHLAReceiver

 Transform

 Decoder

 Table
l ibTransform

libMessaging

libDecoder

libFoundation

libFTPReceiver libDISHLAReceiver

Process

libSystem

Scenario

 l ibDatabase

EnvDatabase

 l ibDatabase

Smart-Pointer Link

Figure 5-1 TAOS Object Model: libIntegrator

Classes Assimilation, Receiving and Receiver collaborate to perform the higher level
functions of the Integrator. Classes Assimilation and Receiving are single-instance classes. The
Integrator’s main function instantiates the single object that “oversees” Integrator operations: the
Assimilation object. Assimilation configures itself (reads server.cfg) and instantiates the
Receiving object. During configuration Assimilation learns which Transforms the user has

1 Rumbaugh, et. al., Object-Oriented Modeling and Design, Prentice Hall, 1991

15

enabled for the current server run and creates one instance of each enabled Transform.
Assimilation also accesses the persistent Scenario object that the user has designated to be the
active scenario for the server run; if this object doesn’t exist, it is created. During configuration
Receiving learns which Receivers the user has enabled and creates one instance of each. Each
Receiver is then directed to configure itself by Receiving. Configuration errors result in
shutdown.

All classes in libIntegrator are MessageBased and are therefore designed to communicate
with each other primarily through exchange of TAOS message objects (see Section 5.3.5).
Although the messaging system design anticipates that MessageBased objects will be run-time
configurable with respect to the host/processor that they are to be executed on, Version 1.0
assigns all MessageBased objects to either the Integrator process or the Distributor process and
all TAOS processes to the local host. It is assumed that the local host has a single processor.
The assignments are made statically in file AddressBook.cc of libMessaging. In Version 1.0
Assimilation, Receiving and all Receiver objects are assigned to the Integrator process, and the
messages exchanged by these classes therefore represent intra-process communication which is
not shown in Figure 3-2; Figure 3-2 indicates only inter-process communication.

The intra-process messaging consists largely of sends/receives of FieldDelivery messages
(see libMessaging) between the Receivers and Assimilation. Receiving’s role is limited once the
server is initialized, acting as a thin management layer between Assimilation and the Receivers.
The Receiver objects act as sources of Field objects (delivered via a FieldDelivery message) and
Assimilation acts as the sink. Receivers process a “stream” of input files, converting each to a
Field object using a set of abstract, polymorphic environmental data pre-processing operations
(methods) such as decode2, register, crop and preprocess, the latter being a hook for an arbitrary
data conditioning procedure.

Assimilation handles received Field objects without consideration of their exact type (see
libDatabase). Each Field received is presented as a candidate input field to each of the enabled
Transform objects. The Field is then stored in the active scenario via a call to
Scenario::add_field followed by a call to Scenario::save. It is a policy that Transform objects
make copies of input Fields that they are interested in, so that Assimilation is able to destroy the
Field once it has been stored.

If when presented a candidate input field a Transform “fires” and consumes its input Fields
to create its output Field(s), Assimilation either receives a Field object directly from the
Transform or the Transform sends a FieldDelivery message to Assimilation which Assimilation
will find when it next checks its “mailbox” (see libMessaging). Either way Assimilation ensures
that the output Field(s) are in turn presented as candidate inputs to the active Transforms. Hence
Assimilation behaves like a “Field pump” with respect to the set of active Transforms, ensuring
that every Transform has an opportunity to act on every Field received directly from a Receiver or
output from itself or another Transform.

2 The polymorphic “decode” method is actually Decoder::next_field.

16

5.1.2 libFTPReceiver (at: src/Integrator/receivers/FTP)

libFTPReceiver includes the FTPReceiver base class which implements the Receiver
functions specific to remote file access via the well-known Internet File Transfer Protocol. This
functionality is entirely contained within method FTPReceiver::execute, which when invoked
delegates essentially all of the responsibility for communication with the remote server to the Perl
program (script) pollftp.prl. pollftp.prl is located in the bin/IRIX5 directory associated with the
libFTPReceiver node and is described in Section 5.1.4 below. pollftp.prl is actually executed in
method FTPReceiver::configure but the process is designed to suspend attempts to connect with
the remote FTP server until given a “go-ahead” signal (literally SIGUSR1); the
FTPReceiver::execute method sends this signal.

The remaining classes in the libFTPReceiver library are each specific to an external model
or data source:

Ocean Regime FTP Receiver Classes: OTISReceiver
SWAFSReceiver

 TOPSReceiver

Wave/Surf Regime FTP Receiver Classes: NSSMReceiver
STWAVEReceiver
SWAPSReceiver
TideReceiver
WAMReceiver

Atmospheric Regime FTP Receiver Classes: AWNReceiver
COAMPSReceiver
NOGAPSReceiver
NORAPSReceiver
UKMesoReceiver
WxRadar Receiver

Many of these classes implement the minimum required specialized methods, inheriting all
required functionality from the FTPReceiver and Receiver base classes.

17

FTPReceiver

AWNReceiver WAMReceiver

libIntegrator

Receiver

Figure 5-2 TAOS Object Model: libFTPReceiver

5.1.3 libDecoder (at: src/Integrator/decoders/TAOS)

A TAOS decoder is an object that knows how to extract Field objects from disk files. The
model presumes that multiple Fields may be stored in the same file. Abstract base class Decoder
defines the interface that a derived class must provide. Class Decoder’s primary public methods
are:

• Error Decoder::bind_to_pathname(const String& encoded_file_pathname) --
associates a file with a decoder.

• Error Decoder::next_field(Field *& decoded_field_p) -- successive calls update the
argument until there are no fields left to decode, as indicated by a NULL argument
update.

• Error Decoder::unbind(void) -- disassociates the decoder from the encoded file
currently bound

 The next_field method is pure virtual and must be defined for a specific encoding. Specific
encoded file types supported by TAOS Version 1.0 are:

• GRIB -- the WMO GRIdded Binary format for gridded meteorological data

• BUFR -- the WMO Binary Universal FoRmat for (largely observational)
meteorological data

18

• WSIBMP -- an extension of the MS Windows .bmp format used by WSI
Corporation’s Weather for Windows product for surface radar imagery.

• Tide -- not formally defined: a simple ASCII format used by the XTide program.

Figure 5-3 illustrates the libDecoder class hierarchy.

Decoder

GRIBDecoder RadarDecoderBUFRDecoder TideDecoder

File

libSystem

GRIBTable

Table

libFoundation

Figure 5-3 TAOS Object Model: libDecoder

5.1.4 FTP Receiver (at: src/Integrator/receivers/FTP/bin/IRIX5)

The FTP Receiver program is the Perl script pollftp.prl, located at
src/Integrator/receivers/FTP/bin/IRIX5. This script requires Version 4.036 of Perl; this
version is included in the TAOS distribution at TAOS_HOME/perl/perl4.036. Public domain
Perl libraries used by pollftp.prl are included in the bin directory given above. pollftp.prl reads
configuration data using the TAOS .cfg file format, and sends messages via the TAOS messaging
system, but does not use TAOS C++ shared library code for either function, employing instead a
functionally-equivalent implementation in Perl. The pollftp.prl script is well-commented.

Each FTPReceiver object that is running in Remote Mode spawns its own pollftp.prl
process for communicating with its external model or data source. pollftp.prl defines command-
line parameters for passing a Receiver id to the script so that the appropriate .cfg file is read by
the program. For example, the UKMesoReceiver object spawns an instance of pollftp.prl and
passes it the string “UKMeso”, which pollftp.prl uses to read configuration file UKMeso.cfg.

5.1.5 TAOS Client Receiver (at: src/Integrator/receivers/DISHLA)

The TAOS Client Receiver communicates with a second, “upstream” instance of a TAOS
server via either the DIS 2.0.3 or 2.0.4 protocols, or via the protocol defined by the STOW
Federated Object Model derived from these DIS protocols. This Receiver listens for (DIS) or
subscribes to (HLA/RTI) Gridded Data PDUs (objects), acting effectively as the simulation client
to the upstream GriddedEnvPublication object (libDistributor). The Integrator Transform

19

Field3D (libTransform) is designed to reassemble 3D gridded fields3 from 2D component fields.
The TAOS Client program is the TAOS Server program running in “client mode”. Client mode is
not formally defined -- i.e., it is not a member of the enumeration ServerMode defined in
Types.hh. TAOS Client mode is enabled in any system configuration where the TAOS Client
Receiver, Field3D Transform and GriddedEnv Publication objects are all enabled. A TAOS
instance running in client mode is designed to 1) receive and reassemble gridded environmental
data from the designated TAOS Server for the simulation exercise, 2) populate a local TAOS
database with field objects reconstituted from the network data, and 3) make this data available to
the true client simulation application via a TCP/IP socket connection, which the
GriddedEnvPublication class object manages when running in private (vs public) mode (see
libDistributor).

The software components that comprise the TAOS Client Receiver are:

• libDISHLAReceiver -- consists of base class DISHLAReceiver, which implements the
communication functions required to receive environmental data over a DIS simulation
network or within an HLA Federation, and derived class TCReceiver which
implements a few higher level functions, such as subscription to gridded environmental
data and filtering of this data based on client-specified configuration parameters.

• TCReceiver.cc -- the main function for the TAOS Client Receiver program. The
main function instantiates a single TCReceiver object and gives it control of the
process via a call to TCReceiver::execute. The TCReceiver class implements the
functions of a process proxy as well as those of the process that it proxies.

• TCReceiver -- executable resulting from linking TCReceiver.cc with
libDISHLAReceiver.

Figure 5-4 provides a context for the classes included in libDISHLAReceiver.

D I S H L A R e c e i v e r

l i b I n t e g r a t o r

R e c e i v e r

T C R e c e i v e r

Figure 5-4 TAOS Object Model: libDISHLAReceiver

3 Specifically, 3D rectangularly-gridded fields.

20

5.2 Distributor Class Library (at: src/Distributor)

Library libDistributor includes classes that provide services uniquely-required by the
Distributor (program EnvDistributor). EnvDistributor is the executable built by linking
Distributor.cc, containing the main function of the Distributor, with libDistributor. The
libDistributor object model is illustrated in Figure 5-5.

Classes Publishing, Scheduler and all classes derived from Publication are single-instance
classes. The main function for the Distributor instantiates a single Publishing object to act as a
manager for the Distributor process. Publishing owns a set of Publication objects. The
Publication base class defines public and protected interfaces for which derived Publications
provide implementations.

The Distributor main function instantiates a Scheduler as part of its initial configuration
procedure, then tells the Scheduler to configure itself. The Scheduler reads initial time and rate
data from server.cfg, as specified via the GUI’s Distributor Setup interface and then provides
services to Publishing and the active Publications for scheduling regular environmental updates,
polling of a messaging-system-provided mailboxes for communication with other TAOS
processes, and other periodically-scheduled events.

 Publishing Publication

Transform

 libTransform

GriddedWxPublication CBRPublication

GriddedEnvPublication NetSeaPublication ObservedWxPublication UniformWxPublication

 Packager

MessagBased

 libMessaging

Scenario

 libDatabase

EnvDatabase

 libDatabase

Smart-Pointer Link

 BasePDU

 libNetwork

SwitchBoard

 libSystem

Figure 5-5 TAOS Object Model: libDistributor

21

As indicated in Figure 5-5, Publication objects are Transforms. Publications transform a
set of Field samples4 extracted by Publishing from the active Scenario object into network objects
containing the environmental data required by client simulations and their effect models (JointSAF
in particular). Each Publication owns a Packager object; the Packager provides methods for
converting Field objects into network class objects derived from BasePDU (see libNetwork).
PDU objects know how to send themselves over a DIS network or the RTI. At environmental
update times derived Publication objects convert their input Fields into objects derived from
BasePDU and tell these PDU objects to send themselves.

5.3 Shared Class Libraries (at: src/shared)

This section describes class libraries that provide common services to the Integrator,
Distributor and Database subsystems. There are no executables associated with these nodes in the
source tree.

5.3.1 libFoundation (at: src/shared/foundation)

libFoundation is the lowest level library in the TAOS system and includes container
classes, a string class, and classes to handle errors and manage time. Much of the functionality
provided by these classes is starting to become available in C++ Standard Template Library
(STL) implementations, but at time of writing a STL for the IRIX5.3 platform is still not
available. In many cases the TAOS foundation class implementations have been made compliant
with the emerging STL standards. Figure 5-6 illustrates the classes included in libFoundation.
Note that template classes are indicated as class names followed by <T, … >; for example,
Array<T> denotes a templated container class parameterized on a single class T, while
Dictionary<K,T> is a doubly-parameterized template class where K is the key class and V is the
value class.

 Array<T>

Dictionary<K,V>

ConfigFile

Real

String

Time

Vector3D
Table

SVAttributeTable GRIBTable

libDatabase libDecoder

List<T>

OrderedList<T>

Boolean

Error

Figure 5-6 TAOS Object Model: libFoundation

4 A Field sample is a 3D field extracted from a 4D field at a specific value of time

22

5.3.2 libSystem (at: src/shared/system)

libSystem is a low-level class library largely providing “object-orientation” for UNIX
system functions. For example, the UNIX system calls for managing files and directories are
encapsulated in methods defined on classes File and Directory respectively. Classes UDPPort,
TCPPort and SwitchBoard encapsulate functions for creating and using datagram and stream
sockets. Class Console provides facilities for building command-line oriented user interfaces and
was used to build interim versions of the Publication Editors and Playback Control interface,
however Version 1.0 employs graphical interfaces exclusively and class Console is not used.
Class Address encapsulates methods for working with Internet addresses augmented with TAOS
object identifiers and is used extensively by the messaging system (see libMessaging). The
classes included in libSystem are indicated in Figure 5-7.

Port

UDPPort TCPPort Switchboard

Address Console Directory

File Process SignalM anager

Receiver

libIntegrator

Figure 5-7 TAOS Object Model: libSystem

5.3.3 libPersistence (at: src/shared/persistence)

libPersistence provides persistent-object management services to the TAOS Database
subsystem and to the messaging system; Figure 5-8 illustrates the object model for this library.
The design of this class library was inspired by Shilling’s article “How To Roll Your Own

23

Persistent Objects in C++” in the July 1994 issue of the Journal of Object-Oriented Programming
(pp. 25–32).

The classes in libPersistence collaborate to allow client objects to create and manage
persistent object clusters. A persistent object cluster is a collection of persistent objects linked by
smart pointers; a smart pointer is an object of the template class SP<T> that obeys “dumb”
(ordinary) pointer syntax but overloads the -> operator and effects automatic loading from disk
when an object is referenced via the smart pointer for the first time. The primary cluster of
persistent objects defined within TAOS is the environmental database itself; note however that
libPersistence provides general persistent object management services and is not specific to the
TAOS database – TAOS-database-specific classes are maintained separately in library
libDatabase.

A persistent object cluster supports the following operations:

• save – synchronize disk image of object with memory image
• restore – synchronize memory image of object with disk image
• free_disk – release disk image, preserving memory image
• free_memory – release memory image, preserving disk image

When any of these methods are invoked on a persistent object, the object propagates the
invocation to all persistent objects linked to that object, whether the link is via a dumb or smart
pointer. Persistent objects maintain a “dirty bit” – a boolean variable indicating whether the (in-
memory) object has been modified since last retrieved from disk. Methods soil, clean and
is_dirty are used to manage the dirty bit, and component objects of a cluster which do not need
to be saved (restored) are not.

EnvDatabase

libDatabase

Database

CreatorObjectStream

Persistent
• save
• refresh
• free disk
• free memory

PArray<T>PList<T> Sp<T>LocatorPMatrix
• save
• refresh
• free disk
• free memory

Figure 5-8 TAOS Object Model: libPersistence

24

Every Persistent object is linked to an associated Database object. In principle multiple
Database objects may exist in the same process but in practice, and in TAOS Version 1.0 in
particular, a single Database object is instantiated all Persistent objects are associated with this
single instance. A Database object maintains a root Locator object which locates the persistent
object cluster that this Database object is responsible for managing. A Locator is an opaque
object (no public interface) whose internals are known only to the Database object (Database is a
friend of Locator); a Locator locates the image of an object on disk. Every smart pointer embeds
a Locator object which it requests from its Database when the object the smart pointer references
is saved for the first time.

Classes PList<T> is a persistent-container class of general utility in constructing object
clusters. The template class parameter must be a class derived from Persistent. Class PMatrix
was used in an early implementation of libDatabase, but its functionality is now provided more
efficiently by class PArray<float>; the class parameter for PArray<T> is designed to be a built-in
atomic data type such as float or char. Class Creator encapsulates a table of pointers to
“creator” functions, keyed on an enumerated set of class ids. Creator functions are static public
member functions that each Persistent class must provide – these functions are called by a
Database object to restore an object from disk based on the class id stored as the first field in the
object’s disk image. Class ObjectStream provides numerous operators for inserting and
extracting objects into a serialized byte stream so that these objects can be stored on disk or
transmitted over a network.

5.3.4 libDatabase (at: src/shared/database)

The object model for the classes included in libDatabase is indicated in Figure 5-9. These
classes support management of the persistent object cluster which is the TAOS environmental
database, and rely heavily on the services provided by libPersistence.

At the heart of libDatabase is the Field class sub-hierarchy, consisting of Field,
UniformField, WaveHeight and GField (the latter is short for Gridded Field). Objects of
specialized Field classes are at the leaves of the persistent object cluster. The Scenario class
aggregates a collection of Field objects, and the EnvDatabase class aggregates Scenario objects.
TAOS instantiates a single EnvDatabase object in each process that requires access to the active
database for an exercise. This object can be queried for the Scenario objects it contains, and
Scenario objects can be queried for the Field objects they contain.

A Field object is associated with a Measure object, which establishes the physical quantity
represented by the field and the systems of units used to express this quantity; a Measure objects’
primary responsibility is managing unit conversions for a particular physical quantity such as
Temperature, Velocity or Pressure. TAOS Version 1.0 includes specialized Measure classes for
these physical quantities:

25

• Temperature
• Pressure
• Distance
• Velocity
• Mixing Ratio
• Accumulated Precipitation
• Instantaneous Precipitation Rate
• Density
• Direction
• Wx Radar Reflectivity
• Frequency
• Duration
• Fraction / Percentage

All derived Measure classes are implemented in the Measure.hh and Measure.cc source files.

Field

Persistent

libPersistence

UniformField WaveHeight ObservedField GField

Scenario

EnvDatabase

Database

libPersistence

Grid

PArray<float>

libPersistence

Location

Station

AbstractRegion

Region

SVAttributeTable

Table

libFoundation
Measure

Pressure Temperature

EventMap

libScheduling

Figure 5-9 TAOS Object Model: libDatabase

26

5.3.5 libMessaging (at: src/shared/messaging)

The classes included in libMessaging are illustrated in the OMT diagram in Figure 5-10.
All services associated with the TAOS messaging system are provided via this library.

Message

Bulletin Command FieldDelivery GriddedEdit StatusReport UniformEditEncodedDelivery

Persistent

libPersistence

MessageBased PostOffice AddressBook

Figure 5-10 TAOS Object Model: libMessaging

As indicated in Figure 5-10, the classes that define libMessaging fall into two disjoint
sets. Classes MessageBased, PostOffice and AddressBook provide the infrastructure for the
dynamic components of the messaging system. The PostOffice is at the heart of the system and is
a single-instance class (a single PostOffice object per process is allowed). A PostOffice object
provides message delivery services for multiple MessageBased objects instantiated in its process.
The PostOffice owns an AddressBook that contains addressing information for all MessageBased
objects in all TAOS processes; MessageBased objects can access the AddressBook via an
accessor provided by the PostOffice class. A PostOffice object provides services for registering a
“mailbox” for each MessageBased object that it serves. A MessageBased object may poll its
mailbox or ask the PostOffice to notify it of incoming messages via the protected callback
function MessageBased::notify.

The classes derived from Message represent actual message objects sent and received by
MessageBased objects, via the PostOffice. Class Bulletin is obsolete; it was used to encapsulate
and transmit observational data before the advent of the ObservedField class (see libDatabase).
Class Command defines a number of command-subtypes and supports arguments for these
subtypes. Commands GriddedEdit, StatusReport and UniformEdit are used to exchange
commands and status with the Publication Editors. See Table 3.2 for a summary of which
message types are sent or received by which MessageBased objects.

27

5.3.6 libTransforms (at: src/shared/transforms)

The classes included in libTransform are illustrated in Figure 5-11.

Transform

MessageBased

libMessaging

OceanicTransform AtmosphericTransform

SoundSpeed

Field3D

CloudLayer PrecipRate_Radar PrecipRate_UKMeso PrecipType TimeSinceLastRain Visibility

Publication

libDistributor

Figure 5-11 TAOS Object Model: libTransforms

A Transform is an object that accepts Field object inputs and which creates one or more
output Fields when all of the required inputs have been received. A Transform is designed to
accept one Field object at a time – either via method Transform::input or via receipt of a
FieldDelivery message (Transforms are MessageBased objects). A Transform object treats a
Field presented to it as a candidate input Field; if the Field is determined to be an actual input the
Transform creates a private copy of the Field which it maintains until all inputs have been
received.

Base classes AtmosphericTransform and OceanicTransform anticipate that Transforms
within a specific environmental regime may benefit from a common set of base class methods.
Class Field3D is not specific to a particular environmental regime. See the User’s Guide for more
information on the specifics of the specialized Transform classes at the leaves of the hierarchy in
Figure 5-11.

28

5.3.7 libNetwork (at: src/shared/network)

libNetwork defines a hierarchy of environmental Protocol Data Units (PDUs) as indicated
in Figure 5-12. The term “PDU” is used to refer to either a true DIS PDU or to an object
published or subscribed to via the HLA’s RTI.

BasePDU

GriddedPDU EnvironmentPDU

Figure 5-12 TAOS Object Model: libNetwork

Class BasePDU encapsulates attributes common to all environmental network objects. It
also provides a key service method: BasePDU::send_DSI for sending the PDU to the Defense
Simulation Internet (a generic term for the network layers of either a DIS- or HLA-based
exercise). In addition to encapsulating the data for a specific environmental object, the BasePDU
class is responsible for interfacing with the JointSAF libpduapi and libpduproc libraries; the
latter provide simulation-architecture-independent network services that allow the same
application to interoperate with DIS and HLA exercises.

5.3.8 libScheduler (at: src/shared/scheduling)

libScheduler is a small class library containing the classes indicated in Figure 5-13. Class
Scheduler is at the heart of the library, providing key time-based scheduling services to the
Distributor and supporting scheduling in real-time, simulation-time or historical-time. This class
is based on the JointSAF libsched and libtime libraries. Class Scheduler is a single-instance
class. The Scheduler object retrieves an EventMap object from the active Scenario object during
configuration to use in determining the relationship between simulation time and historical time
when this relationship is not linear and/or simply described. However, the EventMap class was
developed to support a more complex mapping between historical time and simulation time than is
currently supported by the Operations GUI’s Playback Control Interface; class EventMap has
been preserved within the design however in anticipation of future extensions to the Playback

29

Control subsystem. Class Alarm is a simple wrapper around the UNIX alarm system call and has
been made largely obsolete by functions provided the Scheduler class.

Alarm EventMap Scheduler

Persistent

libPersistence

Scenario

libDatabase

Figure 5-13 TAOS Object Model: libScheduler

5.3.9 libProjections (at: src/shared/projections)

libProjections is not a true class library but is instead a pair of functions for converting
between Geodetic coordinates and coordinates defined on various standard projections supported
by the GRIB standard (e.g., Lambert Conformal, Polar Stereographic). The C functions bundled
into libProjections are based on Fortran code originally provided by NRL Monterey.

6. OPERATIONS GUI

The Operations GUI comprises all Graphical User Interfaces used for monitoring and
control of the TAOS server. While the user sees these interfaces as a seamless whole, employing
common look-and-feel, color schemes and fonts, they are actually implemented as a mix of 1)
X/Motif programs written in C with interfaces built using the UIM/X GUI-builder and 2) Tcl/Tk
programs written in Tcl with interfaces built at run-time directly from the Tcl scripts. The
majority of the Operations GUI, including the TAOS Main Interface, is implemented in C using
X/Motif and UIM/X. Section 6.1 documents the X/Motif programs. Section 6.2 documents the
Tcl/Tk programs.

6.1 X/Motif GUI Components

The X/Motif-based GUI programs consist of the Operations GUI (the program which
manages the TAOS main interface), the Database Browser, the Distributor Monitor and the
Gridded Weather Editor. All are implemented in C using an object-based programming style. In

30

many cases these programs use services provided by the C++ libraries documented in Section 5;
C++ classes whose services are required by X/Motif GUI programs define a C API that
allow these services to be invoked from a C program.

The object-based design of the X/Motif components closely reflects the “object structure”
of the interfaces as seen by the end user. In the sections which follow, the X/Motif components
are described in terms of a hierarchy of these objects:

• Program – the X/Motif-based GUI components include the four distinct
programs named above.

• Interface – also referred to as a Dialog, an interface is a top level window
managed by the window manager. Each program creates and manages
multiple interfaces.

• Block – a group of related widgets typically enclosed in a frame with a raised
border with a label that refers to the group. Each interface creates and
manages multiple blocks. Some blocks are used in multiple interfaces;
management modules for these blocks are located in
src/OperationsGUI/XMotif/shared.

In the sections below, the object structure of the X/Motif programs are presented in terms of
tables which identify the interface/block hierarchy for the program and the C modules which
manage objects in the hierarchy. C modules are identified by their module name: the source code
that implements a module is located in files <module-name>.h and <module-name>.c; e.g., a
module named ErrorDialog is implemented in source files ErrorDialog.h and ErrorDialog.c.

6.1.1 Operations GUI (at: src/OperationsGUI/XMotif/UI)

The Operations GUI program manages the TAOS main interface, the Distributor
Configuration interface, the Publication configuration interfaces, the Playback Control interface,
the UniformWx Editor and the NetSea Editor. The object structure of this program is shown in
Table 6-1. The main function for this program is in source file OperationsGUI.c.

6.1.2 Database Browser (at: src/OperationsGUI/XMotif/DBBrowser)

The Database Browser program manages the Database Browser interface and the Event
Definition interface. The object structure of this program is shown in Table 6-2. The main
function for this program is written in C++ and is in file DatabaseBrowser.cc.

31

Interface Block Management Modules
Main all MainDialog

DistributorStatusDisplay
IntegratorStatusDisplay
ReceiverStatusDisplay
ServerStatusDisplay
OpGuiReceivers
StatusColors

all DistributorSetupDefinitions
DistributorSetupDialog

Exercise Parameters ExerciseParmsBlock
Distributor Configuration Times (UTC) ExerciseTimesBlock

Simulation Rate SimulationRateBlock
TimePeriodInputForm

At Historical End Time HistoricalEndBlock
Publications PublicationsBlock

GriddedWx Publication Configuration all ConfigGriddedDialog
Load Leveling Window LoadLevelingBlock

NetSea Publication Configuration all ConfigNetSeaDialog
UniformWx Publication Configuration all ConfigUniformDialog

Playback Control all PlaybackControlDialog
UniformWx Editor / NetSea Editor all UninetEditorDialog

UninetEditBlock
UninetSVeditor

Table 6-1 Operations GUI Object Structure

Interface Block Management Modules
all DatabaseBrowseDialog

Events EventEditorBlock
Database Browser Scenario Bounds ScenarioBoundsBlock

State Variables StateVariablesShowBlock
(time advancement control) V5dControlBlock

Event Definition all EventDefineDialog
EventEditDialog

Table 6-2 Database Browser Object Structure

6.1.3 Distributor Monitor (at: src/OperationsGUI/XMotif/Monitor)

The Distributor Monitor program manages the Monitor interface and the Network Traffic
interface. The object structure of this program is shown in Table 6-3. The main function for this
program is in file Monitor.c.

Interface Block Management Modules
Monitor all MonitorDialog

Network Traffic all NetworkTrafficDialog

Table 6-3 Distributor Monitor Object Structure

32

6.1.4 GriddedWx Editor (at: src/OperationsGUI/XMotif/GriddedWxEditor)

The GriddedWx Editor program manages the GriddedWx Editor interface and the Insert
Geometry interface. The object structure of this program is shown in Table 6-4. The main
function for this program is in file GriddedWxEditor.c.

Interface Block Management Modules
GriddedWx Editor all GriddedWxEditorDialog

Insert Editor InsertEditBlock
InsertsSet

Insert Geometry all GeometryDialog

Table 6-4 GriddedWx Editor Object Structure

6.1.5 Shared Libraries

Three shared libraries are used extensively by the X/Motif GUI programs. libUIshared
contains C modules for managing widget blocks which appear on multiple interfaces.
libV5DView is a C++ class library which provides an object-oriented interface to the Vis5D API
for OpenGL-based environmental data visualization as well as OpenGL-based drawing algorithms
for use in the GriddedWx Editor. libUISupport is an older library containing additional GUI
support functions.

libUIshared (at: src/OperationsGUI/XMotif/shared)

libUIshared includes C modules used by multiple programs. These modules can be
further classified on the basis of the services they provide:

• Custom Widgets – specialized compound widgets
• Common Blocks – blocks used in multiple interfaces
• Utility Dialogs – e.g., error and confirmation dialogs
• Utility Modules – utilities with no graphical counterpart, e.g. containers

Table 6-5 lists the modules in libUIshared by “service category”.

33

Service Category Modules
Custom Widget BooleanMenuInput

ControlScale
EventSetDisplay
IntegerInput
OptionMenuInput
RealInput
ScaleInput
StringInput

Common Blocks ClockBlock
DataViewBlock
IsosurfaceForm
ScalarHorizSliceForm
ScalarVertSliceForm
ScenarioSelectBlock
StateVariableSelectBlock
TimeEntryForm
VectorHorizSliceForm
VectorVertSliceForm
VolumeForm

Utility Dialogs ConfirmationDialog
DirectorySelectionDialog
ErrorDialog
MessageDialog

Utility Modules BooleanConfigParm
ConfigParameterSet
ConfigurationParameter
Dialog
EventSet
FloatEditor
IntegerConfigParm
OpGUIpostOffice
QStringConfigParm
RealConfigParm
RTConfig
ScenarioView
SelectList
StateVariableEditor
StateVarHolderList
StateVariableHolder
StateVariableSet
StringConfigParm
TimeConfigParm

Table 6-5 libUIshared Modules by Service Category

libV5DView (at: src/OperationsGUI/XMotif/V5DView)

The libV5DView class library provides an extensible interface for embedding interactive
visualizations of large 5-D gridded data sets into an X /Motif application. This library provides
an additional, object-oriented layer of abstraction above the University of Wisconsin Space

34

Science and Engineering Center Vis5D application/API that it is based on. libV5DView
encapsulates most of the details of configuring an X/Motif-based graphics display for OpenGL
rendering. Figure 6-1 illustrates the full set of system and application-specific libraries, and the
Application Programming Interfaces (APIs) involved, in an application that combines X/Motif
with OpenGL (on an IRIX5.x platform) via the libV5DView library. The object model for the
classes in the libV5DView library is shown in Figure 6-2.

SGI OpenGL Library

libV5DView
Interactive Environmental Visualization in an X/Motif and

OpenGL programming environment

C++ API

C API

Space Science & Engineering Center of the University of
Wisconsin-Madison

Vis5D
 Interactive Visualization Library in an X, OpenGL

programming environment

X Consortium’s X, Xlib and Motif Libraries

SGI GLX Library

C
 A

PI

Figure 6-1 libV5DView Context and APIs

35

DrawingAreaWidget

AppOpenGLView

Vis5DView

DrawBoxView

Vis5D

DrawVis5D

Uses XmDrawingArea Widget

Has a GLX Context

Figure 6-2 TAOS Object Model: libV5DView

Class DrawingAreaWidget provides an extensible, polymorphic infrastructure for defining
an X/Motif drawing area widget’s functionality. A DrawingAreaWidget object references a
X/Motif Drawing Area Widget provided by a client to this class. Class AppOpenGLView is a
specialized DrawingAreaWidget class with a method for configuring the embedding X/Motif
application for 3-D OpenGL rendering. The view encapsulated by an AppOpenGLView object is
double-buffered and therefore capable of supporting animation. Class Vis5dView is an
AppOpenGLView with mutators responsible for controlling the display (view) of a Vis5D-
formatted dataset (file). Class DrawboxView extends class Vis5DView to support 2-D rectangle
drawing in support of the GriddedWx Editor. Class Vis5D collaborates with Vis5DView to
provide the embedding application with a full set of services for managing a Vis5D view of large
5D environmental datasets: the client to this library invokes all services provided by the library via
the public interface to a Vis5D object (or through the public interface to a derived DrawVis5D
object). A Vis5D object manages a single Vis5D OpenGL window; in TAOS Version 1.0 there
are no GUI programs that instantiate more than one such window, although there are multiple
programs that each have a single Vis5D OpenGL window. Class DrawVis5D specializes this class

36

to support drawing and highlighting of rectangles within the OpenGL model space to support the
GriddedWx Editor; public methods are provided to support creation and deletion of rectangle
objects in the active OpenGL view.

libUISupport (at: src/OperationsGUI/XMotif/UISupport)

libUISupport is a library of GUI miscellany likely to be made obsolete in a future release.
It currently provides a collection of C functions for use by the OperationsGUI in module
UISupport (files UISupport.hh and UISupport.cc), and also a C++ class Visual that
encapsulates methods for converting one or more TAOS Field objects into a Vis5D file (a
preprocessing step currently required but likely to be replaced in the future by a direct-memory
approach to improve visualization system performance).

6.2 Tcl/Tk Components (at: src/OperationsGUI/TclTk)

The Tcl/Tk GUI components documented in this section include the TAOS Chart
Assistant, the Master State Variable Table Editor, and the Integrator and Receiver Configuration
interfaces. These applications are each currently implemented as a single Tcl/Tk script. These
scripts work in terms of TAOS command extensions to the Tcl scripting language – the C/C++
code that implements the command extensions is located at src/tcl/tclsh/src, with source files
named with a “tt” prefix as in ttTable.cc (“tt” denotes “TAOS Tcl”). The Tcl interpreter which is
the target of a make for node src/tcl/tclsh/src links in the TAOS command extensions but not the
Tk extensions required for graphical applications. The Tcl interpreter built as the target of a
make of src/tcl/vis5dsh/src links in the Tk extensions – and a contributed OpenGL widget
known as a togl widget (Tk OpenGL) – to support TAOS graphical interfaces which may (or may
not) include a togl widget for Vis5D-based environmental visualization.

6.2.1 Chart Assistant (at: src/OperationsGUI/TclTk/ChartAssistant)

The Tcl/Tk/togl script ChartAssistant.tcl, which runs under the taos_vis5dsh Tcl
interpreter built from node src/tcl/vis5dsh, is an application for creating graphics image files
containing weather charts in a format specified by operational military meteorologists (METOC
officers) in support of the STOW exercise. This application includes a Vis5D/OpenGL window
for environmental data visualization and employs a direct-memory data transfer mechanism to
improve performance.

6.2.2 Master State Variable Table Editor (src/OperationsGUI/TclTk/MSVTEditor)

The Tcl/Tk script MSVTEditor.tcl implements the Master State Variable Table Editor
for managing the contents of the system state variable table stored in file state-variable.tbl. This
script runs under taos_vis5dsh, but does not use a togl widget.

37

6.2.3 Integrator Configuration Interface (at: src/OperationsGUI/TclTk/IntegConfig)

The Tcl/Tk script IntegConfig.tcl implements the configuration interface for the TAOS
Environmental Integrator. This program is launched from the Integrator option menu (action
Configure) on the main interface. This script runs under taos_vis5dsh, but does not use a togl
widget.

6.2.4 Receiver Configuration Interface (at: src/OperationsGUI/TclTk/RcvrConfig)

The Tcl/Tk script RcvrConfig.tcl implements the configuration interface for all TAOS
Receivers and is invoked when the user pressed a Receiver button on the main interface or the
Configure button for a Receiver from the Integrator Configuration interface. This script runs
under taos_vis5dsh but does not use a togl widget.

